organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,11,17,23-Tetrakis(chloromethyl)-25,26,27,28-tetrapropoxycalix[4]arene

Felix Kutter,^a Matthias H. Düker,^a Matthias Zeller^b and Vladimir A. Azov^a*

^aUniversity of Bremen, Department of Chemistry, Leobener Strasse, NW 2C, D-28359 Bremen, Germany, and ^bYoungstown State University, One University Plaza, Youngstown, OH 44555-3663, USA Correspondence e-mail: vazov@uni-bremen.de

Received 7 February 2011; accepted 21 February 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.119; data-to-parameter ratio = 26.3.

The title calix [4] arene, $C_{44}H_{52}Cl_4O_4$, displays the 1,3-alternate conformation with crystallographically imposed twofold symmetry. Four phenolic rings of the calixarene backbone are tilted into the calix cavity, making dihedral angles of 77.42 (2) and 77.71 (2) $^{\circ}$ with the plane of the four bridging methylene C atoms. Pairs of opposite aromatic rings make dihedral angles of 25.16 (3) and 24.58 (4) $^{\circ}$ with each other. In the crystal, the calixarene molecules pack with the formation of infinite columns along the b axis. The crystal packing shows a network of C-H···Cl contacts, which can be considered as non-classical hydrogen bonds.

Related literature

For calixarene derivatives and their applications, see: Gutsche (2008); Ikeda & Shinkai (1997). For the use of calixarenes in crystal engineering, see: Dalgrano et al. (2007). For the previous synthesis of the title compound, see: Ikeda & Shinkai (1994a). For its application in the formation of nanotubes, see: Ikeda & Shinkai (1994b). For reviews on weak non-classical hydrogen bonding, see: Desiraju & Steiner (1999); Steiner (2002); Desiraju (2005).

Experimental

Crystal data

C44H52Cl4O4	V = 4177.7 (9) Å ³
$M_r = 786.66$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 23.104 (3) Å	$\mu = 0.32 \text{ mm}^{-1}$
b = 11.5871 (15) Å	$T = 100 { m K}$
c = 17.618 (2) Å	$0.49 \times 0.31 \times 0.15 \text{ mm}$
$\beta = 117.655 \ (2)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.658, T_{\max} = 0.746$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	235 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.84 \text{ e} \text{ Å}^{-3}$
6176 reflections	$\Delta \rho_{\rm min} = -1.05 \ {\rm e} \ {\rm \AA}^{-3}$

15796 measured reflections

 $R_{\rm int} = 0.019$

6176 independent reflections

5280 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline C22 - H222 \cdots Cl25^{i} \\ C23 - H231 \cdots Cl26^{ii} \end{array}$	0.97	2.90	3.786 (1)	153
	0.97	2.90	3.557 (2)	127

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS, enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

We are grateful to Dr C. M. L. Vande Velde (Karel de Grote University College, Antwerp, Belgium) and Dr D. Watkin (University of Oxford) for helpful discussions. MHD is grateful to BFK NaWi, University of Bremen, for financial support. The X-ray diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and Youngstown State University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2266).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dalgrano, S. J., Thallapally, P. K., Barbour L. J. & Atwood, J. L. (2007). Chem. Soc. Rev. 36, 236-245.

Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.

- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gutsche, C. D. (2008). *Calixarenes: An Introduction*, 2nd ed., *Monographs in Supramolecular Chemistry*, edited by J. F. Stoddart, Cambridge: The Royal Society of Chemistry.
- Ikeda, A. & Shinkai, S. (1994a). J. Am. Chem. Soc. 116, 3102-3110.
- Ikeda, A. & Shinkai, S. (1994b). Chem. Commun. pp. 2375-2376.
- Ikeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713–1734.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, o728-o729 [doi:10.1107/S160053681100660X]

5,11,17,23-Tetrakis(chloromethyl)-25,26,27,28-tetrapropoxycalix[4]arene

F. Kutter, M. H. Düker, M. Zeller and V. A. Azov

Comment

Calixarenes, a family of macrocyclic compounds, have shown to be superb molecular scaffolds for the construction of macromolecular and supramolecular architectures (Gutsche, 2008; Ikeda & Shinkai, 1997). Calix[4]arenes can adopt several conformations, of which the *cone* conformation is the most commonly employed one. Due to their bowl shape and ease of preparation, they are employed widely in supramolecular encapsulation. The *1,3–alternate* conformation of calix[4]arenes is much less commonly used. The title compound and its derivatives were previously synthesized (Ikeda & Shinkai, 1994*a*) to study binding of metal cations in solution, as well as for preparation of calixarene–based nanotubes (Ikeda & Shinkai, 1994*b*).

The molecule of the title compound is shown in Fig. 1. The calix[4]arene bowl adopts the *1,3–alternate* conformation around a twofold symmetry axis; for that reason, the IUPAC numbering scheme for calix[4]arenes could not be applied. All bond lengths and angles may be considered normal. Four phenolic rings are pitched into the calix cavity, as defined by the angles, which the aromatic rings make with the plane of the four bridging methylenes (C1–C7–C1ⁱ–C7ⁱ): 77.42 (2)° (ring C2–6, C14) and 77.71 (2)° (ring C8–13), respectively (symmetry code: (i) -*x*+1, *y*, -*z*+3/2). Two pairs of opposite aromatic rings show interplanar angles of 25.16 (3)° (ring C2–6, C14) and 24.58 (4)° (ring C8–13), respectively. Four propyl chains point outside the cavity and adopt an *anti* conformation for all their bonds. Four chlorine atoms are also pointing outside from the calix cavity.

Several non–classical intermolecular weak hydrogen bonds are present in the structure (Desiraju & Steiner, 1999; Steiner, 2002; Desiraju, 2005). Details of the packing interactions are given in Table 1. Molecules pack into infinite columns along the *b* axis. Two short C23–H231···Cl26ⁱⁱⁱ (symmetry code: (iii) *x*, *y*-1, *z*) contacts (2.90Å), parallel to the *b* axis, link molecules with each other (Fig. 2). Along the *c* axis, the molecules are interconnected side–to–side through pairs of C22–H222···Cl25ⁱⁱ (symmetry code: (ii) *x*, *-y*, *z* - 1/2) interactions (2.90Å, Fig. 3). In both cases, hydrogen atoms of the C22–24 propyl chains serve as H–bond donors. When viewed along the *b* axis, calixarene backbones form infinite channels with a shortest distance of 8.8090 (13)Å between the two neighboring channel centers (Fig. 2).

Experimental

A solution of 25,26,27,28–tetrapropoxycalix[4]arene (0.108 g, 0.169 mmol), paraformaldehyde (0.115 g, 3.83 mmol), glacial acetic acid (1.3 ml), and conc. H₃PO₄ (1.3 ml) in dioxane (5 ml) was stirred for 2 h at 353 K. After addition of conc. HCl (1.3 ml, 16.1 mmol) the solution was stirred for additional 16 h at 353 K. The mixture was concentrated under vacuum up to *ca* 3 ml, poured into ice/water (100 ml) and extracted with CH_2Cl_2 (3×20 ml). The combined organic phases were washed with water and brine, dried (Na₂SO₄), and evaporated to dryness. The resulting oil was dissolved in a small amount of CH_2Cl_2 and *Me*OH was slowly added. The precipitate was filtered off, washed with cold *Me*OH, dried under vacuum, and purified by column chromatography to yield 80 mg (0.102 mmol, 60%) of product as a white crystalline powder.

 $R_{\rm f} = 0.41$ (CH₂Cl₂/PE, 1:1). Mp: 562–565 K (CHCl₃/heptane, decomp.); Lit: 556–558 K (Ikeda & Shinkai, 1994*a*). ¹H NMR (200 MHz, CDCl₃): δ 1.02 (t, *J* = 7.5 Hz, 12 H), 1.78 (tq, *J* = 7.2, 7.5 Hz, 8 H), 3.55 (s, 8 H), 3.63 (t, *J* = 7.2 Hz, 8 H), 4.43 (s, 8 H), 7.01 (s, 8 H). ¹³C NMR (50 MHz, CDCl₃): δ 10.6, 23.8, 36.0, 46.7, 73.8, 129.8, 130.5, 133.3, 156.7. HR–MS (EI, 70 eV): *m/z* 784.25829 (M^+ , C₄₄H₅₂Cl₄O₄⁺, calcd. 784.26197).

X-ray quality crystals were grown by slow evaporation of a chloroform/heptane solution and appeared as large (up to 1-2 mm) transparent blocks.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were located in electron difference density maps and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93Å–0.98Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. *ORTEP–3* plot of the title molecule with the atom numbering scheme. Displacement ellipsoids are represented at 50% probability levels. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x+1, y, -z+3/2.

Fig. 2. Crystal packing of the title compound viewed along the *b* axis into the infinite channels formed by the calixarene backbones. Short C—H···Cl contacts, interconnecting pairs of molecules along the *c* axis, are shown as dotted lines.

Fig. 3. Packing of the title compound viewed along the *a* axis. Short C—H…Cl contacts, interconnecting pairs of molecules along the *b* axis (vertical) and *c* axis (horizontal), are shown as dotted lines.

5,11,17,23-Tetrakis(chloromethyl)-25,26,27,28-tetrapropoxycalix[4]arene

Crystal data

F(000) = 1664
$D_{\rm x} = 1.251 \ {\rm Mg \ m}^{-3}$
Melting point = 562–565 K
Mo K α radiation, $\lambda = 0.71073$ Å

a = 23.104 (3) Å b = 11.5871 (15) Å c = 17.618 (2) Å $\beta = 117.655 (2)^{\circ}$ $V = 4177.7 (9) \text{ Å}^{3}$ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer	6176 independent reflections
Radiation source: fine-focus sealed tube	5280 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.019$
ω scans	$\theta_{\text{max}} = 31.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -32 \rightarrow 21$
$T_{\min} = 0.658, T_{\max} = 0.746$	$k = -16 \rightarrow 16$
15796 measured reflections	$l = -25 \rightarrow 24$

Cell parameters from 6719 reflections

 $\theta = 2.6 - 31.2^{\circ}$

 $\mu = 0.32 \text{ mm}^{-1}$ T = 100 K

Plate, colourless

 $0.49 \times 0.31 \times 0.15 \text{ mm}$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.119$	Method: Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.06P)^2 + 6.5P],$ where $P = (\max(F_o^2, 0) + 2F_c^2)/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\text{max}} = 0.001$
6176 reflections	$\Delta \rho_{max} = 0.84 \text{ e} \text{ Å}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$
0 restraints	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.50019 (6)	0.26912 (11)	0.95475 (8)	0.0164
C2	0.54654 (6)	0.20061 (11)	0.93269 (8)	0.0149
C3	0.53732 (6)	0.08279 (11)	0.91462 (8)	0.0167
C4	0.57355 (6)	0.02376 (11)	0.88215 (8)	0.0170
C5	0.61874 (6)	0.08366 (11)	0.86547 (8)	0.0168
C6	0.62966 (6)	0.20102 (11)	0.88333 (8)	0.0148
C7	0.67218 (6)	0.27004 (11)	0.85493 (8)	0.0163
C8	0.62887 (6)	0.33794 (11)	0.77464 (8)	0.0143
C9	0.61781 (6)	0.45548 (11)	0.77855 (8)	0.0160
C10	0.57288 (6)	0.51528 (11)	0.70662 (8)	0.0164
C11	0.53667 (6)	0.45584 (11)	0.63009 (8)	0.0159

C12	0.54589 (6)	0.33795 (11)	0.62379 (8)	0.0144
C13	0.59403 (6)	0.28149 (10)	0.69587 (8)	0.0137
C14	0.59478 (6)	0.25714 (10)	0.91977 (8)	0.0145
C15	0.55982 (8)	-0.10064 (12)	0.85763 (10)	0.0239
C16	0.56055 (8)	0.64034 (12)	0.71362 (10)	0.0231
O17	0.60538 (4)	0.37378 (8)	0.93772 (6)	0.0152
C18	0.65446 (7)	0.39656 (12)	1.02414 (8)	0.0203
C19	0.66500 (8)	0.52464 (13)	1.03584 (10)	0.0267
C20	0.71259 (8)	0.55535 (15)	1.12794 (11)	0.0327
O21	0.60378 (5)	0.16480 (8)	0.69063 (6)	0.0160
C22	0.65246 (7)	0.13892 (11)	0.66358 (9)	0.0186
C23	0.64766 (7)	0.01154 (13)	0.64361 (10)	0.0246
C24	0.69974 (8)	-0.02954 (15)	0.61997 (11)	0.0314
C125	0.61811 (3)	-0.19788 (3)	0.93509 (3)	0.0381
C126	0.62004 (3)	0.73262 (3)	0.70485 (3)	0.0407
H11	0.5243	0.3212	1.0025	0.0157*
H12	0.4747	0.2162	0.9728	0.0143*
H31	0.5042	0.0438	0.9235	0.0150*
H51	0.6414	0.0427	0.8393	0.0158*
H72	0.7020	0.3210	0.9014	0.0138*
H71	0.6988	0.2163	0.8411	0.0144*
H91	0.6406	0.4933	0.8305	0.0136*
H111	0.5048	0.4966	0.5830	0.0128*
H151	0.5183	-0.1218	0.8522	0.0232*
H152	0.5596	-0.1137	0.8038	0.0233*
H162	0.5642	0.6536	0.7693	0.0219*
H161	0.5193	0.6646	0.6685	0.0223*
H181	0.6947	0.3556	1.0335	0.0207*
H182	0.6413	0.3680	1.0656	0.0205*
H192	0.6830	0.5531	0.9985	0.0289*
H191	0.6222	0.5628	1.0206	0.0279*
H201	0.7230	0.6366	1.1318	0.0433*
H203	0.7532	0.5123	1.1473	0.0441*
H202	0.6935	0.5370	1.1652	0.0450*
H221	0.6956	0.1595	0.7082	0.0178*
H222	0.6420	0.1815	0.6115	0.0173*
H231	0.6530	-0.0287	0.6945	0.0258*
H232	0.6051	-0.0045	0.5971	0.0253*
H242	0.6953	-0.1109	0.6068	0.0429*
H241	0.7421	-0.0116	0.6648	0.0429*
H243	0.6957	0.0125	0.5702	0.0441*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0182 (6)	0.0177 (5)	0.0144 (5)	0.0010 (4)	0.0086 (5)	0.0009 (4)
C2	0.0162 (6)	0.0154 (5)	0.0129 (5)	0.0013 (4)	0.0066 (5)	0.0018 (4)
C3	0.0173 (6)	0.0153 (5)	0.0169 (6)	-0.0003 (4)	0.0076 (5)	0.0026 (4)

C4	0.0192 (6)	0.0138 (5)	0.0165 (5)	0.0009 (4)	0.0070 (5)	0.0011 (4)
C5	0.0185 (6)	0.0150 (5)	0.0169 (6)	0.0029 (4)	0.0084 (5)	0.0017 (4)
C6	0.0135 (5)	0.0160 (5)	0.0134 (5)	0.0012 (4)	0.0051 (4)	0.0027 (4)
C7	0.0144 (5)	0.0181 (5)	0.0160 (5)	0.0007 (4)	0.0066 (5)	0.0021 (4)
C8	0.0133 (5)	0.0147 (5)	0.0167 (5)	-0.0002 (4)	0.0085 (5)	0.0012 (4)
С9	0.0172 (6)	0.0152 (5)	0.0170 (6)	-0.0020 (4)	0.0092 (5)	-0.0009 (4)
C10	0.0194 (6)	0.0130 (5)	0.0200 (6)	-0.0006 (4)	0.0119 (5)	0.0006 (4)
C11	0.0166 (6)	0.0147 (5)	0.0172 (6)	0.0008 (4)	0.0086 (5)	0.0026 (4)
C12	0.0160 (6)	0.0151 (5)	0.0147 (5)	-0.0010 (4)	0.0092 (5)	0.0003 (4)
C13	0.0148 (5)	0.0125 (5)	0.0167 (5)	-0.0002 (4)	0.0098 (5)	0.0008 (4)
C14	0.0155 (6)	0.0131 (5)	0.0128 (5)	0.0004 (4)	0.0047 (4)	0.0012 (4)
C15	0.0292 (7)	0.0166 (6)	0.0248 (7)	-0.0011 (5)	0.0117 (6)	-0.0009 (5)
C16	0.0308 (7)	0.0146 (6)	0.0267 (7)	0.0017 (5)	0.0156 (6)	0.0007 (5)
017	0.0169 (4)	0.0129 (4)	0.0131 (4)	-0.0005 (3)	0.0046 (3)	0.0000 (3)
C18	0.0218 (6)	0.0190 (6)	0.0142 (6)	0.0007 (5)	0.0035 (5)	-0.0003 (4)
C19	0.0296 (8)	0.0202 (6)	0.0237 (7)	-0.0023 (5)	0.0068 (6)	-0.0047 (5)
C20	0.0261 (8)	0.0328 (8)	0.0306 (8)	-0.0005 (6)	0.0059 (6)	-0.0149 (6)
O21	0.0188 (4)	0.0126 (4)	0.0208 (4)	0.0013 (3)	0.0127 (4)	-0.0002 (3)
C22	0.0197 (6)	0.0185 (6)	0.0220 (6)	0.0025 (5)	0.0134 (5)	-0.0003 (5)
C23	0.0223 (7)	0.0215 (6)	0.0300 (7)	0.0024 (5)	0.0122 (6)	-0.0073 (5)
C24	0.0253 (7)	0.0352 (8)	0.0327 (8)	0.0104 (6)	0.0126 (6)	-0.0073 (6)
Cl25	0.0615 (3)	0.01859 (16)	0.02742 (19)	0.01114 (16)	0.01501 (19)	0.00475 (13)
C126	0.0690 (3)	0.02000 (17)	0.0518 (3)	-0.01600 (18)	0.0438 (3)	-0.00762 (16)

Geometric parameters (Å, °)

C1—C12 ⁱ	1.5220 (17)	C14—O17	1.3837 (15)
C1—C2	1.5214 (18)	C15—Cl25	1.7998 (15)
C1—H11	0.973	C15—H151	0.950
C1—H12	0.998	С15—Н152	0.958
C2—C3	1.3956 (17)	C16—Cl26	1.8037 (15)
C2—C14	1.3994 (17)	С16—Н162	0.958
C3—C4	1.3927 (18)	C16—H161	0.957
С3—Н31	0.962	O17—C18	1.4392 (15)
C4—C5	1.3940 (18)	C18—C19	1.503 (2)
C4—C15	1.4959 (19)	C18—H181	0.988
C5—C6	1.3922 (17)	C18—H182	0.970
C5—H51	0.967	C19—C20	1.521 (2)
C6—C7	1.5203 (18)	С19—Н192	0.984
C6—C14	1.4018 (18)	C19—H191	1.000
С7—С8	1.5190 (17)	C20—H201	0.967
С7—Н72	0.985	C20—H203	0.974
C7—H71	0.982	C20—H202	0.969
C8—C9	1.3933 (17)	O21—C22	1.4420 (16)
C8—C13	1.4016 (17)	C22—C23	1.5094 (19)
C9—C10	1.3938 (18)	C22—H221	0.971
С9—Н91	0.927	C22—H222	0.969
C10—C11	1.3946 (18)	C23—C24	1.521 (2)
C10—C16	1.4929 (18)	C23—H231	0.966

C11 C12	1 3950 (17)	Сэз нэээ	0.061
C11_H111	0.041	C24 H242	0.965
	0.941	$C_{24} = 11242$	0.905
C12—C13	1.4024(17) 1.2810(14)	C_{24} II241	0.932
	1.3810 (14)		0.908
$C12^{i}$ — $C1$ — $C2$	108.63 (10)	C4—C15—H151	110.3
C12 ¹ —C1—H11	109.8	Cl25—C15—H151	106.3
C2—C1—H11	110.8	C4—C15—H152	109.9
C12 ⁱ —C1—H12	110.2	Cl25—C15—H152	108.1
C2—C1—H12	110.4	H151—C15—H152	108.5
H11—C1—H12	107.0	C10-C16-Cl26	112.72 (10)
C1—C2—C3	121.19 (11)	C10-C16-H162	108.1
C1—C2—C14	120.36 (11)	Cl26—C16—H162	106.6
C3—C2—C14	118.00 (12)	C10-C16-H161	111.8
C2—C3—C4	121.13 (12)	Cl26—C16—H161	105.1
C2—C3—H31	118.1	H162—C16—H161	112.5
C4—C3—H31	120.7	C14—O17—C18	112.95 (9)
C3—C4—C5	119.59 (12)	O17—C18—C19	108.92 (11)
C3—C4—C15	120.30 (12)	O17—C18—H181	107.9
C5—C4—C15	119.87 (12)	C19—C18—H181	111.8
C4—C5—C6	120.90 (12)	O17—C18—H182	111.4
C4—C5—H51	118.7	C19—C18—H182	108.7
C6—C5—H51	120.3	H181—C18—H182	108.1
C5—C6—C7	121.09 (12)	C18—C19—C20	111.62 (13)
C5—C6—C14	118.31 (12)	С18—С19—Н192	109.3
C7—C6—C14	120.23 (11)	С20—С19—Н192	108.3
C6—C7—C8	109.38 (10)	C18—C19—H191	108.8
С6—С7—Н72	110.6	C20—C19—H191	108.6
C8—C7—H72	111.6	H192—C19—H191	110.1
С6—С7—Н71	108.8	C19—C20—H201	109.7
C8—C7—H71	108.4	C19—C20—H203	110.9
H72—C7—H71	108.0	H201—C20—H203	107.8
C7—C8—C9	121.12 (11)	С19—С20—Н202	109.9
C7—C8—C13	120.51 (11)	H201—C20—H202	110.0
C9—C8—C13	118.09 (11)	H203—C20—H202	108.5
C8—C9—C10	121.15 (12)	C13—O21—C22	113.71 (10)
С8—С9—Н91	118.5	021-C22-C23	107.23 (11)
C10—C9—H91	120.3	021—C22—H221	110.3
C9—C10—C11	119.54 (11)	C23—C22—H221	111.5
C9—C10—C16	119.84 (12)	O21—C22—H222	108.5
C11—C10—C16	120.49 (12)	C23—C22—H222	108.5
C10-C11-C12	121.02 (12)	H221—C22—H222	110.7
C10—C11—H111	118.6	C22—C23—C24	112.83 (13)
C12—C11—H111	120.4	C22—C23—H231	106.9
$C1^{i}$ $-C12$ $-C11$	121.15 (11)	C24—C23—H231	109.0
$C1^{i}$ $C12$ $C13$	120 33 (11)	C22—C23—H232	108.9
$C_1 - C_{12} - C_{13}$	118 09 (11)	C24_C23_H232	109 3
C_{12} C_{13} C_{8}	121 91 (11)	H231_C23_H232	109.8
$C_{12} = C_{13} = C_{03}$	118 79 (11)	C23_C24_H242	111.2
012-013-021	110.77(11)	023 - 027 - 11272	111.4

C8—C13—O21	119.11 (11)		C23—C24—H241		110.1
C6—C14—C2	121.86 (11)		H242—C24—H241		111.5
C6—C14—O17	118.64 (11)		С23—С24—Н243		109.5
C2-C14-O17	119.34 (11)		H242—C24—H243		108.6
C4—C15—Cl25	113.61 (10)		H241—C24—H243		105.7
Symmetry codes: (i) $-x+1$, y , $-z+3$	3/2.				
Hydrogen-bond geometry (Å, °)				
D—H…A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C22—H222···Cl25 ⁱⁱ		0.97	2.90	3.786 (1)	153
C23—H231···Cl26 ⁱⁱⁱ		0.97	2.90	3.557 (2)	127

Symmetry codes: (ii) *x*, –*y*, *z*–1/2; (iii) *x*, *y*–1, *z*.

Fig. 2

